
Choose data
sources

Identify
tools in
papers

Collect data
Define

megamodel
Classify

tools
Identify
trends

Techniques are hard to
understand

Tools are often not production-
ready

Information sources may be
unreliable and unavailable

Motivation

produces arguments
that determine what

is correct

Contribution

Data set

Megamodel

Verifier
says whether the

claim is true or
false

Modelling Program Verification Tools
for Software Engineers

Sophie Lathouwers and Vadim Zaytsev
s.a.m.lathouwers@utwente.nl, vadim@grammarware.net

Argument

e.g. the program
has no memory

leaks

Claim

Prover

460 papers from CAV and TACAS
420+ tools, frameworks and specification formats
Includes information such as domain, what input is
needed, input format, output produced, internal
details, relations to other tools, links to project
pages, and more!

Available at
https://slebok.github.io/proverb

There are many
program verification
tools and techniques
but it is difficult to
find and choose a
suitable tool

We present a megamodel [1]
for program verification tools
to make them more accessible
to a broader audience.
We have also prepared a data
set with concrete examples of
program verification tools

The model is based on the classic division of roles in a
correctness proof as introduced by Goldwasser, Micali and
Rackoff in 1985 [2].

Using this model, we have identified seven levels: PV0 – PV6.
The higher levels tend to give more correctness guarantees,
though typically at the cost of more user effort. For example,
PV6 includes theorem provers, whereas PV1 may include a
tool to check emptiness of automata.

[1] Sophie Lathouwers and Vadim Zaytsev. 2022. Modelling Program Verification Tools for Software Engineers. In ACM/IEEE 25th International
Conference on Model Driven Engineering Languages and Systems (MODELS ’22). https://doi.org/10.1145/3550355.3552426
[2] S Goldwasser, S Micali, and C Rackoff. 1985. The knowledge complexity of interactive proof-systems. In Proceedings of the seventeenth annual ACM
symposium on Theory of computing (STOC '85). https://doi.org/10.1145/22145.22178

Synthesiser

Artefact

PV2

Artefact

PV1

Verifier

Artefact &
Specification

PV5
Specification

Compiler
Verifier

Artefact &
Specification

PV4

Artefact &
Properties

PV3

Solver
Specification

Provider
Verifier

Specification

Property
Generator

Properties Properties

