
public class SearchArray {
 /*@ requires a!=null;
 @ requires a.length>0;
 @ ensures \result>=0 ==> a[\result]==elem;
 @ ensures \result==-1 ==> (\forall int i;
 0<=i && i<a.length; a[i]!=elem); */
 public static int search(int[] a, int elem) {
 int i = 0;
 /*@ loop_invariant 0<=i;
 @ loop_invariant i<=a.length;
 @ loop_invariant (\forall int j; 0<=j
 && j<i; a[j]!=elem); */
 while (i<a.length) {
 if (a[i]==elem) { return i; }
 i++;
 }
 return -1;
 }
}

VerCors

Want more?
Scan me!

utwente.nl/vercors

Translate specifications between
tools
Generate specifications
Apply VerCors to embedded &
industrial systems
Improve usability and

 scalability of the
 approach

To your
project?

VerCors

Funding projects

VerDi

VerCors Verification of Concurrent and
Distributed Software

Current collaborators
Marieke Huisman (Project lead), Lukas Armborst, Petra
van den Bos, Pieter Bos, Paula Herber, Sophie Lathouwers,
Raúl Monti, Robert Rubbens, Mohsen Safari, Ömer Şakar,
Philip Tasche.

Problem
Concurrency in systems can cause subtle bugs that are difficult to detect.
As a result, concurrent systems are notoriously difficult to build.
To help build correct software, we develop VerCors, a tool for the
verification of concurrent and distributed software.

How does it work?
Specification describes the intended
behaviour of the system
The user provides the program code and
specifications to VerCors
VerCors determines whether the
program is correct w.r.t. the specification
using logical inference
VerCors supports multiple languages
including Java, C, CUDA and OpenCL!

Achievements
Verified Parallel Nested DFS, an important
verification algorithm
Case study with Technolution to detect bugs in
their tunnel control software
VeyMont: Given a verified program, we can generate
a correct parallelised version
Alpinist: Automatic transformation of specifications
for GPU optimisations

What's next?

2022

Verified!

